skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sharifi, Siavash"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Currently soft robots primarily rely on pneumatics and geometrical asymmetry to achieve locomotion, which limits their working range, versatility, and other untethered functionalities. In this paper, we introduce a novel approach to achieve locomotion for soft robots through dynamically tunable friction to address these challenges, which is achieved by subsurface stiffness modulation (SSM) of a stimuli-responsive component within composite structures. To demonstrate this, we design and fabricate an elastomeric pad made of polydimethylsiloxane (PDMS), which is embedded with a spiral channel filled with a low melting point alloy (LMPA). Once the LMPA strip is melted upon Joule heating, the compliance of the composite structure increases and the friction between the composite surface and the opposing surface increases. A series of experiments and finite element analysis (FEA) have been performed to characterize the frictional behavior of these composite pads and elucidate the underlying physics dominating the tunable friction. We also demonstrate that when these composite structures are properly integrated into soft crawling robots inspired by inchworms and earthworms, the differences in friction of the two ends of these robots through SSM can potentially be used to generate translational locomotion for untethered crawling robots. 
    more » « less
  2. Herein, a new class of robust bicontinuous elastomer–metal foam composites with highly tunable mechanical stiffness is proposed, fabricated, characterized, and demonstrated. The smart composite is a bicontinuous network of two foams, one metallic made of a low melting point alloy (LMPA) and the other elastomeric made of polydimethylsiloxane (PDMS). The stiffness of the composite can be tuned by inducing phase changes in its LMPA component. Below the melting point of the LMPA, Young's modulus of the smart composites is ≈1 GPa, whereas above the melting point of the LMPA it is ≈1 MPa. Thus, a sharp stiffness change of ≈1000× can be realized through the proposed bicontinuous foam composite structure, which is higher than all available robust smart composites. Effective medium theory is also used to predict the Young's modulus of the bicontinuous smart composites, which generates reasonable agreement with experimentally measured Young's modulus of the smart composites. Finally, the use of these smart materials as a smart joint in a robotic arm is also demonstrated. 
    more » « less
  3. Materials with tunable properties, especially dynamically tunable stiffness, have been of great interest for the field of soft robotics. Herein, a novel design concept of robust three‐component elastomer–particle–fiber composite system with tunable mechanical stiffness and electrical conductivity is introduced. These smart materials are capable of changing their mechanical stiffness rapidly and reversibly when powered with electrical current. One implementation of the composite system demonstrated here is composed of a polydimethylsiloxane (PDMS) matrix, Field's metal (FM) particles, and nickel‐coated carbon fibers (NCCF). It is demonstrated that the mechanical stiffness and the electrical conductivity of the composite are highly tunable and dependent on the volume fraction of the three components and the temperature, and can be reasonably estimated using effective medium theory. Due to its superior electrical conductivity, Joule heating can be used as the activation mechanism to realize ≈20× mechanical stiffness changes in seconds. The performance of the composites is thermally and mechanically robust. The shape memory effect of these composites is also demonstrated. The combination of tunable mechanical and electrical properties makes these composites promising candidates for sensing and actuation applications for soft robotics. 
    more » « less